10+((a^2)/9)=16

Simple and best practice solution for 10+((a^2)/9)=16 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10+((a^2)/9)=16 equation:



10+((a^2)/9)=16
We move all terms to the left:
10+((a^2)/9)-(16)=0
We add all the numbers together, and all the variables
(a^2/9)-6=0
We get rid of parentheses
a^2/9-6=0
We multiply all the terms by the denominator
a^2-6*9=0
We add all the numbers together, and all the variables
a^2-54=0
a = 1; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·1·(-54)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*1}=\frac{0-6\sqrt{6}}{2} =-\frac{6\sqrt{6}}{2} =-3\sqrt{6} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*1}=\frac{0+6\sqrt{6}}{2} =\frac{6\sqrt{6}}{2} =3\sqrt{6} $

See similar equations:

| 10+a^2/9=16 | | 8y+10+5y=28 | | 1/3x+2=37/9x | | 7.5/x=3/5 | | 40×(9+b)=+ | | -8(3x+2)=4 | | -8(3x+2)=5 | | 27.8/25=x | | 9(y-3)=72 | | 5+(-4)+12.65=a | | 7=D4d-2+d | | 3^3x+9=10×3^x | | D=74d-2+d | | 3x+3x+8=48 | | -3(v-13)=-18 | | U=q×q²-10q | | -6x+14=1-8x | | -3x-6=7x+34 | | x+6x9=81 | | .8n=20 | | 9y+4y=17 | | 12x-(3x-2)=101 | | X-x/2-3=13 | | 25=y/4-10 | | -4h=-2h+8 | | 9u-11=u+37 | | 4t-43=3t-14 | | 4v+8=9v-67 | | 0.5q  =  6.25 | | 5x+×÷5=52 | | 3v+5=7v-83 | | 4w+59=10w+23 |

Equations solver categories